Virtual Machine allocation based on its CPU
utilization using Deep Learning

Ketulkumar Polara
KFSCIS
Florida International University
Miami, Florida
kpola009 @fiu.edu

Abstract—The allocation of virtual machines (VMs) in vir-
tualized environments is a critical task that requires efficient
resource utilization to minimize costs and improve performance.
This paper proposes a deep learning-based approach to allocate
VMs based on their CPU utilization. We use Long Short-Term
Memory (LSTM) algorithm to predict future resource utilization
and allocate VMs accordingly. Our proposed solution is evaluated
on a real dataset collected from a distributed datacenter. Our
results show that our approach outperforms traditional fixed
rules-based allocation methods in terms of performance and
efficiency.

Index Terms—Virtual Machine, Deep Learning, LSTM, Re-
source Allocation, CPU Utilization, Virtualized Environment.

I. INTRODUCTION

In recent years, cloud computing has seen tremendous
growth and has changed the IT industry, because of its
capability to provide practically unlimited scalability, no up-
front investment and maintenance for IT infrastructure and
usage-based payments. Where optimal Virtual Machine (VM)
allocation is a key challenge in cloud computing, as it affects
the performance, cost, and energy consumption of cloud
providers and users. VM allocation is the process of assigning
VMs to physical machines (PMs) in a cloud data center, such
that the resource demands of VMs are satisfied by the resource
capacities of PMs. VM allocation is a complex and dynamic
problem, as it involves multiple objectives and constraints,
such as minimizing resource wastage, maximizing resource
utilization, balancing the load among PMs, reducing the num-
ber of active PMs, satisfying the service level agreements
(SLAs) of users, and adapting to the changes in VM requests
and resource availability. However, allocating VMs based on
fixed rules or pre-defined thresholds for resource utilization
can lead to inefficiencies or errors in allocation process. For
example, some rules may require global or centralized infor-
mation, which is hard to obtain or maintain in a large-scale
distributed system. Other rules may involve intricate trade-
offs or dependencies that are difficult to resolve or balance.
The rules may conflict with each other or with other policies
or objectives of the cloud provider or the customers which
ultimately results in increased costs, and poor performance.

Florida International University

Priyaben Barot
KFSCIS
Florida International University
Miami, Florida
pbaro008 @fiu.edu

Jose Jimenez
KFSCIS
Florida International University
Miami, Florida
jjime197 @fiu.edu

To overcome these problems, some alternative approaches
have been proposed, such as using machine learning, optimiza-
tion, or game theory techniques to dynamically and adaptively
allocate VMs. In this paper we propose to solve the subsection
of the problem, we will use machine learning techniques like
LSTM and CNN-LSTM to forecast the VM’s CPU utilization
based on VMs historical usage data, the allocation strategy
based on forecast results is out of scope for this paper.

We used a dataset of 1594 VMs over 49 hosts from Delft
University of Technology (TUDelft) to achieve desired results.
We also identified the problem as multivariate forecasting
problem. Further some series of preprocessing steps were
performed on the acquired data to make the proposed model
generalize better followed by model building and measure re-
sults using Mean square Error and Mean Absolute Percentage
Error.

The proposed deep learning-based approach has the poten-
tial to lead to better performance, efficiency, and cost savings
in virtualized environments by dynamically allocating VMs
based on actual resource utilization our research contributes
to the growing body of literature on resource allocation in
virtualized environments and highlights the potential of deep
learning approaches for addressing the challenges associated
with VM allocation.

II. RELATED WORK

The surge in demand for cloud computing services has
led to a significant upswing in research in this field in
recent years. As a result, various machine learning models
have been proposed to predict the CPU utilization of virtual
machines (VMs), which play a critical role in efficient resource
allocation in cloud environments.

Some of the most widely studied models for predicting CPU
utilization include Linear Regression [1], k-nearest neighbor
[2], recurrent neural networks [3], and Autoregression neural
network (AR-NN) [4]. These models have been evaluated
using a range of datasets, such as TPC-W, PlanetLab, and
FastStorage, to optimize VM allocation and ensure efficient
utilization of cloud resources.

Linear Regression is a basic and widely used statistical
model that maps input features to output values linearly. It has
been applied to predict CPU utilization of VMs by considering

24@48x48

8@128x128
8@64x64

Convolution

Max-Pool

24@16x16

Max-Pool

Fig. 1. Structure of convolutional neural network

n/

4*-1 +6*2

* *_1 =
4*2+6*1=2 113

/1747

6%-1+1%2
+0*-1=-4

Kernel=

1*-1+0%2

0%-1+5%2=9
+5%1=-4

14/

Fig. 2. The operation of the one-dimensional convolution

various features such as disk I/O, network usage, and memory
usage.

The k-nearest neighbor (KNN) model is a non-parametric
model that works by identifying the k closest data points in
the training dataset and using their average values to make
predictions. KNN has been applied to predict CPU utilization
by considering various features such as disk I/O, network
usage, and memory usage.

Recurrent neural networks (RNN) are specialized neural
networks that are designed to process sequential data. RNNs

have been applied to predict CPU utilization by considering
time-series data. They can capture the dynamic dependencies
among the time steps and predict the future values of CPU
utilization.

Autoregression neural network (AR-NN) is a type of re-
current neural network that uses auto-regressive techniques
to model time-series data. It has been applied to predict
CPU utilization of VMs by considering past values of CPU
utilization as input to the network.

To evaluate and optimize these models for VM allocation,

researchers have utilized datasets such as TPC-W, PlanetLab,
and FastStorage. These datasets provide a realistic workload
for the models to train on and enable researchers to evaluate
the performance of the models under different conditions.
Overall, these studies have shown that deep learning models
such as RNNs and AR-NNs can provide superior performance
for predicting CPU utilization of VMs and can lead to more
efficient VM allocation in cloud environments.

III. METHODOLOGY

In this paper, we have implemented two different deep
learning models: Long Short-Term Memory (LSTM) and
Convolution Neural Networks (CNN-LSTM) to forecast CPU
utilization of Virtual Machines (VMs), to form optimal VM
allocation strategies.

A. Convolution Neural Networks

CNN is a type of feed-forward artificial neural network
widely used for image analysis and recognition with powerful
feature extraction capability. It extracts features hidden in the
input layer using multiple filters or kernels. CNNs use these
filters with small receptive fields that slide over the input and
produce translation-equivariant response. This allows CNNs to
capture local patterns and spatial relationships in data. [S] The
other capability of CNNs includes refining and downsampling
data dimensionality in time and space which reduces the
training parameters and avoids overfitting of the model. The
general architecture of CNN model is shown in Figure 1.

A basic convolution neural network architecture usually
includes a convolutional layer, pooling layer (ex: MaxPooling
and AveragePooling), activation layer and fully connected
layer.

The convolutional layer uses a mathematical operation
called convolution which applies filters or kernels to an input,
to produce an output, such as feature map. The filter slides
over the input and performs element-wise multiplication and
summation to extract features from the input. Based on the
input dimension the dimension of the kernel in convolutional
layer is decided by the user. The kernel values are tuned during
training using backpropagation algorithm. The mathematical
operation of convolution is shown in Figure 2, and it is
expressed mathematically as:

Y= wy x T + by (D

Pooling layer is a key operation in the convolutional neural
network that enhances the feature extraction capability. [6]
It aims to reduce the data size of the previous layer and
eliminate redundant information. This lowers the number of
parameters and computation in the network, which helps to
prevent overfitting and improve the model’s generalization
performance. In this paper, we propose a method that combines
max pooling and average pooling to process feature maps. The
two pooling operations are illustrated in Figure 3.

Fully connected layer (FCL), which is usually placed at the
end of the CNN, acts as a “classifier” in the convolutional
neural network. The softmax function is often used in the

AveragePooling
Operation

Maxpooling
Operation

Fig. 3. Schematic diagram of max pooling and average pooling

output layer of a multiclassification problem to ensure that
the output value is between 0 and 1, and the sum of all output
values is 1. The output value represents the probability of this
output, and the one with the highest probability is chosen as
the final prediction result.

B. Long Short-Term Memory Network

5

(o, é o=
A 4 R
- L+ J+ JL +
a
° B 2
M 0] L1 2/ o ‘
\ y L 1 1 e
= 1 -
Inputs: outputs: Nonlinearities: Vector operations:
Input vector Memory from ‘«/ —‘ Sigmoid fx] Element-wise
current block 0 4 - multiplication
A Memory from Output of Hyperbolic ‘ -t ‘ Element-wise
Ca) d) g
"/ previousblock current block tangent Summation /
o Concatenation
‘/ B Y Output of
___/ previousblock Bias: O

Fig. 4. The internal data operation of the LSTM cell

The recurrent neural network (RNN) is a type of deep neural
network that can share information on the time dimension
by adding connections (i.e., weights) among neurons in the
same layer, making it suitable for dealing with time series
problems. [7] Long short-term memory (LSTM) is a type of
recurrent neural network (RNN) that has feedback connections
and can process not only single data points (such as images),
but also entire sequences of data (such as speech or video).
LSTM networks are an extension of RNNs mainly introduced

CNN

Fully
Connected
Layer

LSTM

— g ©
E T
fe e s ijs Ll g

®

S o
iy
% ®
7 @

o o=

s 1o ifs 13 [| g

HEEEEEEEEEEEEEE
}
000000000000000000000

Fig. 5. Structure of the IDCNN-LSTM model

to handle situations where RNNs fail. LSTM networks have
a forget gate that allows the network to forget information
that is no longer relevant. This makes LSTM networks more
efficient at learning long-term dependencies. The internal data
operation of the LSTM cell is shown in Figure 4.

Figure 1 illustrates a recurrent neural network (RNN) cell,
which consists of four gates (input, output, forget, and cell
gates) and a cell status. The gates use sigmoid activation to
determine which information to forget, store, and output. The
cell status is updated based on the input and forget gates,
and the hidden state is computed using the output gate and
the cell status. The input value at time t, denoted by Cj, is
obtained by applying the tanh activation function to the matrix
multiplication of the vector [h;_1, x¢] with the weights and
biases of the cell status as follows:

C; = tanh(We.[hi—1, 7] + be))

The forgotten gate f;, input gate i;, and output gate o, at
time t are computed using the sigmoid activation function
applied to the matrix multiplication of [h;_1, ;] with the
weights and biases of each gate.

fe=o(Wy.[hi—1, 3] + by)
’it = U(Wi.[ht_l,.’tt] + bz) (3)
0y = O'(WO.[ht_l,ZL’t] + bo)

By element-wise multiplication of f; with the previous
cell state C;_1, the information to forget and retain can be
determined, and element-wise multiplication of ¢; with the
current input cell state C} determines the information to save
and utilize, controlling ~ C}. The hidden node state value at
time t is obtained by summing these two products. The output
at time t is determined by applying the tanh function to the
cell status multiplied by the output gate o,.

IV. IMPLEMENTED FORECASTERS

An end-to-end forecasting algorithm based on CNN-LSTM,
which forecasts future resource utilization of VMs based on
historical usage data, is proposed in this paper.

A. Proposed CNN-LSTM Model

The proposed end-to-end forecasting model based on CNN-
LSTM includes stacked convolutional layers, pooling layers,
an LSTM layer, and a fully connected layer. The first two
pooling layers use max pooling to select the most salient and
relevant features, while the last layer uses average pooling to
preserve more useful information. The LSTM layer is placed
after the fully connected layer to capture the temporal depen-
dency of the features extracted by the convolution operation
and fully represent the time series data. The final layer is a
dense layer which predicts future values.

CPU cores -

CPU capacity provisioned [MHZ] -

CPU usage [MHZ] -

CPU usage [%] -

Memory capacity provisioned [KB] -

0.35

Memory usage [KB] - 0.35

Memory usage [%] -

Disk read throughput [KB/s] -

Disk write throughput [KB/s] - 048 048
Disk size [GB] -
Network received throughput [KB/s] - 0.27 027
MNetwork transmitted throughput [KB/s] - 037 037
i oY E
5 T £
=] = £
g o [
5] -
a
5 2
=] (v}
4
5]

CPU capacity provisioned [MHZ] -

035 035 033 048 027 037 08

035 035 033 0.27 | 037

0.6

031 024

o.88 -0.4

o

o

e

L
o
LY
&

0049 015

-0.2

0.052

0.049

o
(Y
-
o
(Y
&

Memory usage [%] -
Disk size [GB] -

Disk read throughput [KB/s] ﬂ
o
&
=
e
"~

Memaory usage [KB] -
Disk write throughput [KB/s] -

Memaory capacity provisioned [KEB] -
Network received throughput [KB/s] -

Network transmitted throughput [KB/s] -

Fig. 6. Correlation Heatmap

B. Forecasting Process

The Forecaster based on CNN-LSTM includes two steps.
Firstly, the CNN-LSTM model is built and trained on the
training set; Secondly, the model is optimized on validation
set and then the model can be used to make predictions future
CPU utilization. The Forecasting flowchart of CNN-LSTM is
shown in Figure 5. The model building sets:

Step 1: Acquire data from Delft University of Technology
(TUDelft) website.

Step 2: Performed data cleaning operations, implement fea-
ture selection process using correlation analysis and Normalize
data using Standard Normalization.

Step 3: Implement sliding window technique on dataset to
prepare data as inputs and labels. In these papers we used the
past 48 hours as inputs to predict 1 hour in the future. [8]

Step 4: Divide the dataset into training set, validation set,
and test set.

Step 5: Set the initial parameter of the model

Step 6: Train the model on the training set. Tune the model
parameter on the validation set using forward propagation and
backward propagation.

Step 7: Evaluate the trained model using testing set.

V. EXPERIMENT AND RESULTS
A. Experiment Conditions

The PyTorch framework by Meta and the python language
are used in the experiment of this paper. The experiment
program is run on the computer with 2.60GHz Intel(R) Core
(TM) i7-10750H CPU and 32 GB memory. We ran two
different models LSTM and CNN-LSTM using the forecasting
process mentioned in Section 4. We first ran the LSTM model
to set the benchmark results on the dataset following we ran
CNN-LSTM model to achieve desirable results.

B. Dataset Description and Preprocessing

In this paper, as mentioned above the dataset was acquired
from Delft University of Technology (TUDelft) website, the
dataset contains usage resource utilization data of 1594 VMs
over 49 hosts from a distributed data center of Materna.
The dataset came with a separate .csv file for each VM
trace. Which included features like Timestamp, CPU Cores,
CPU capacity provisioned [MHZ], CPU usage [MHZ], CPU
usage [%], Memory capacity provisioned [KB], Memory usage
[KB], Memory usage [%], Disk read throughput [KB/s], Disk
write throughput [KB/s], Disk size [GB], Network received
throughput [KB/s], Network transmitted throughput [KB/s].

We performed correlation analysis on all features for feature
selection, through which it was found CPU usage [MHZ] and
CPU usage [%], Memory usage [KB] and Memory usage
[%], Disk read throughput [KB/s] and Network transmitted
throughput [KB/s] are highly correlated to each other hence
one of the feature from the feature pair can be dropped and it
will help LSTM model to generalized better. The correlation
graph can be seen in Figure 6.

C. Results

The performance of the model was measured using mean
squared error (MSE) and mean absolute percentage error
(MAPE) the fitting of both models can also be seen in Figure
7 and Figure 8.

CPU Utilization (MHz) vs Time (hr)

—— True Load

14 { —— Predicted Load

12 4
N 104
£
s 87
=
[
N
= 6
=]
=}
S 49

2 -

04

T T T T T T T T
0 250 500 750 1000 1250 1500 1750
Time (hr)
Fig. 7. LSTM

1) Mean Square Error: Mean squared error (MSE) is a
measure of the average squared difference between the actual
and predicted values in a forecasting analysis.

MSE can be expressed mathematically as follows:

n

MSE = %Z(yz - 9:)%)

i=1

4)

where n is the number of observations in the dataset, y; is
the actual value of the target variable for the ith observation,
and '’ is the predicted value of the target variable for the i‘"
observation.

2) Mean Absolute percentage Error: Mean absolute per-
centage error (MAPE) is a metric used to measure the accuracy
of a forecasting model or a regression model. MAPE calculates
the percentage difference between the predicted and actual
values of the target variable, and then takes the average of
those percentage differences.

MAPE can be expressed mathematically as follows:

CPU Utilization (MHz) vs Time (hr)
12

— True Load
—— Predicted Load
10 -
— 81
N
T
£
g °
=1
M
M
5 4
=}
o
v}
24
0_

T T T T T T T
0 250 500 750 1000 1250 1500 1750

Time (hr)
Fig. 8. CNN-LSTM
1 — N
MAPE = o Z(Kyi —9i)/yi)l) >

i=1

where n is the number of observations in the dataset, y; is
the actual value of the target variable for the ith observation,
and 3’ is the predicted value of the target variable for the i*"
observation.

H Models MSE MAPE H
LSTM 0.24 0.76
CNN-LSTM 0.22 0.62
ACKNOWLEDGMENT

The authors would like to thank Prof. Dr. Christian
Poellabauer for his support and friendly advice and inspiration
to this research work.

REFERENCES

[1] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, and H. Tenhunen,

“Utilization prediction aware vm consolidation approach for green cloud

computing,” in 2015 IEEE 8th International Conference on Cloud Com-

puting. 1EEE, 2015, pp. 381-388.

S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for

adaptive resource provisioning in the cloud,” Future Generation Computer

Systems, vol. 28, no. 1, pp. 155-162, 2012.

[3] M. Duggan, K. Mason, J. Duggan, E. Howley, and E. Barrett, “Predicting

host cpu utilization in cloud computing using recurrent neural networks,”

in 2017 12th international conference for internet technology and secured

transactions (ICITST). 1EEE, 2017, pp. 67-72.

Q. Zia Ullah, S. Hassan, and G. M. Khan, “Adaptive resource utilization

prediction system for infrastructure as a service cloud,” Computational

intelligence and neuroscience, vol. 2017, 2017.

[5] H. Sun and S. Zhao, “Fault diagnosis for bearing based on ldcnn and

Istm,” Shock and Vibration, vol. 2021, pp. 1-17, 2021.

Y. LeCun, Y. Bengio, G. Hinton et al., “Deep learning. nature, 521 (7553),

436-444,” Google Scholar Google Scholar Cross Ref Cross Ref, p. 25,

2015.

[7]1 S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[2

[

[4

—

[6

—_

[8] J.Li, Y. Si, T. Xu, and S. Jiang, “Deep convolutional neural network based
ecg classification system using information fusion and one-hot encoding
techniques,” Mathematical problems in engineering, vol. 2018, pp. 1-10,
2018.

