Enhanced Deep Learning Anti-Data Corruption

Jose Jimenez Espada (6140508)
Knight Foundation School of Computing and Information Sciences (KFSCIS)
Florida International University

Abstract—Data corruption is a major issue for personal com-
puters, databases, and commercial computers. Although there
are current methods to detect data corruption and restore data
corruption, advances in algorithms have led us to integrate Al
algorithms to restore corrupted data. Deep learning is advanced
enough to help reverse any damages done by corruption. This
paper will show how a combination of deep learning and double
layered checksums to prevent and reverse data corruption.

Index Terms—deep learning, checksum, heuristic, gradient
descent, data corruption

I. INTRODUCTION

Data corruption is a major issue in the computing industry.
Users face corruption for several reasons. Data corruption is
commonly caused by hardware failures and interruption. Most
personal computer users do not understand the risks associated
with interrupting tasks while the OS is storing data in memory
because this causes corruption. Integration of Al at the OS
system level helps prevent this common silent issue, which
most are not even aware of. The operating system on most
personal computers states that the corrupted data is - most of
the time - damaged beyond repair. This paper wants to change
this with this new method.

Beyond personal computers, commercial computers and
databases suffer from corruption, not because of recklessness
or lack of knowledge, but because attackers corrupt data as a
form of cyberattack [1]. At this level, it is crucial for these
industries to have such operating algorithms to help reverse
what was labeled irreversible.

Al integrated in operating systems is underutilized, and it
aids with the obstacles and hurdles that operating systems go
through. It should be a necessary tool to aid loss of important
or useful data.

II. METHOD

A. Limited Method

Since the resources used are limited for re-implementing a
universal algorithm that will help restore corrupted data, for all
if not most data files. For the sake of the example, the project
will be based on a small sample, and although the sample is
small, it is practical and can be expanded at a larger scale. The
vision of the project is to make use of its application to the
fullest extent. If it succeeds with image corruption, in theory,
it should restore any type of corrupted file. Only sections of
the file will be restored.

B. Applied Method

This project used a sample of corrupted images, and will use
Deep Learning Neural Networks to restore corrupted images.
Hypothetically speaking, this algorithm alone is powerful
enough to restore corrupted data, but it may still fall short.
The project will use double layered checksums to prevent
corruption go undetected [2]. Even if corruption were to
occur, multiple layers of checksums, would make it easier for
the Neural Network to converge to an uncorrupted file. The
method will have two parts: Deep Learning Neural Network
and multiple layer checksums.

C. Deep Learning Neural Network

The neural network will consists of two layers and will
use the backpropagation algorithm to converge to the correct
uncorrupted data [5]. In this limited and small scale, the
project will concern about which part of the binary data file is
corrupted and how it is likely to be restored. With the limited
resources used for testing and implementation, the inputs will
consist of the first line of characters in the data file. The
checksums will detect if there is any corruption on the file,
and then it will try to salvage any part of the file to restoration.
In the equation (1) we can see how the processing elements
of the second layer is calculated. Equation (2) consists of the
general weighted calculation of the neural network. Equation
(3) consists of the activated function ”SoftMax” which is easy
to implement and derive from [5].

Llp Za(f(1‘1,332,-.-,1‘n)) (1)

flz1, 20,y 2p) =pri * T 2)
i=1

a(x) = max(0, x) 3)

The second layer will consists of four processing elements
which will help find the more complex decision boundary. It
will replicate the calculations of the first layer with the small
of adjustment of weight sums and parameter input sizes.

In the project’s neural network, the parameter input size
will be the file. For the experiment sake, we analyzed the
first line of the binary version of the image which is 42 input
elements. These calculation will go to a hidden layer, for the
experiment sake, we have chosen 20 processing elements in
the first hidden layer, because it is one of the most effective
size. The output layer will be the same size of the input layer,
since the algorithm generally rewrites the binary file to what it
believes it is supposed to be anyway. In figure (1), we can see



the modeled neural network on a small scale for explanation
purposes. For demonstration purposes, figure (1) is only shown
on a small scale, because the actual diagram of the neural
network used is large enough to not be as comprehensive.

Neural Network

In3 Out3
“’QQ{QJ\ - M
In Qut2
Inl Outl
PO
InO)&W % Out0
LO L1 L2

Fig. 1. An example of the neural network used for regenerating the binary
file on a small scale.

D. Double Layered Checksums

This method makes the process less error prone and makes
the process more efficient, because it will be the neural
network’s heuristic. Because neural networks are not perfect,
no matter how much you train it, there must be alternative
measures to prevent from over reliance of neural networks.
This also prevents the hallucination problem of neural net-
works from occurring [7]. Instead of one checksums validating
of whether or not the file is corrupted, multiple layered
checksums make the process more difficult to corrupt. The
assignment of checksums will be based on sections of the data
file and will be equally divided. For the sake of our limitations,
we will base this on each binary line on file, and assign their
checksums throughout the file.

Czl = f(xi7xi+17 7*%'77,) (4)

Equation (4) represent the first layer of checksums. The
function is the calculation and procedure for converting a
stream of data elements into a checksum to verify if the file
is corrupted.

Cf = f(C}, Cla, - Cn) ()

Equation (5) represents the second layer of checksums, which
is a recursion of the first layer. The checksums of the data
streams are being verified and treated as if they are data
elements, being verified across the data stream.

E. Proposed Format

In order for this to work, we must restructure how data is
saved. Double layered checksums require us to save metadata
of both each line in the binary data file, and checksums of
every line on file. Although the file will be substantially larger,
the data file is less likely to be corrupted, if this is implemented
as the main storage format for the OS.

FE Ideal Method

On a larger scale, there will be a larger deep learning neural
network with more layers, since every file-type has a different
logical structure, thus requiring more complexity. Checksums
verification method would have more layers, ensuring full
security of the file, and further detection aid for the file. The
training would be more vast and more intensive and adds in
validation and testing.

III. EXPERIMENT AND RESULTS
A. Equipment and Resources

The project will be operating on a laptop, with an Intel
Quad Core I-7 with 1.9 GHz, 24 GB of RAM, and it operates
Windows 10. The selected programming language of the
project is Python, and the project will use it own version of
neural network, in other words, it will be a hard coded neural
network.

B. Dataset

Our dataset will be based on a series of pictures of a house.
We will only reverse corruption on images of houses, since
it is sufficiently large enough to have a reliable model. The
dataset will consist of 14 images, and a series of correct
checksums. Since it is risky downloading corrupted files from
the internet or other sources, the project contains an algorithm
that replicates the image from the binary file and modifies
it (intentionally corrupting it) in order to train the model.
The model create 100 different corrupted versions of a single
image, but all of this will be fed into the model for training,
and ideally it will uncorrupt these series of files.

Fig. 2. An image of the sample house used for training the model.



C. Gradient Descent

The deep learning needs to adjust the weights and bias
consistently, yet logically. Using the gradient descent approx-
imation theorem, a randomized genetic algorithm for gradient
descent, we will find the ideal weights efficiently and logically
[5]. This method is used due to it may finding the results
quicker than expected, and it also prevents the local minima
and maxima problem being labeled as global minima or
maxima [6]. The approximation theorem that the project used
is attempting with two layers of random weights and biases
and adjusting from there, based on the steepest descent from
the initialization. The program will pick the best model, and
make it have a child with slight modifications in hope of
improvement.

D. Training and Loss

In the training, it shows how much potential this concept
has in restoring corrupted data. The training alone, has brought
significant results, although it is not up to industry standards,
for the amount of training the model has seen makes it reliable.
As we can see in figure (2), we have approximated our model

Loss Function vs. Epochs (w/o Checksums)

175000

150000

125000 -

100000 -

Loss Function

75000 -

50000 ~

25000 1

T T T T T T
0 200 400 600 800 1000
Epochs

0

Fig. 3. The training loss as the model was being trained to repair slightly
corrupted images into non-corrupted images.

to converge the reversal of the neural network. The training
set is short enough, yet effective. Although the model’s loss
function is not quite zero, this is acceptable enough to restore
the corrupted datafile effectively.

IV. RELATED WORKS

There is many methods for anti-data corruption, and most
if not all of them, do not use the method of Al to solve
the problem. The papers and resources reviewed talks about
methods on preventing data corruption to happen in the first
place. Most research papers analyzed are based on detecting
data corruption, not reversing them.

In another paper, it talks about a useful framework named
Proactive Checking Framework (PCF) in how this framework
automatically deals with database corruption on a state basis

[3].

There is a paper that uses multiple layered checksums [1].
In the experiment, we took inspiration and recreated it in a
small scale, by instead of having in multiple layers, we have
it in double layers.

Most of the papers analyzed speak about how to prevent
data corruption from occuring in the first place. For example,
even-bit parity and odd-bit parity can both prevent corruption
and reverse corruption.

V. CONCLUSION

This experiment is valuable and should be further enhanced
and analyzed. Unfortunately, because of lack of better equip-
ment, testing this had to be both specific and practical at the
same time. It is found that Deep Learning does help restore
data files, if trained and tested effectively, and thoroughly.
Double layered checksums does reduce processing time, be-
cause it will detect even the least corrupted file to be fixed,
due to a series of sophisticated signatures. Although the paper
was limited in scope and training, images were only used
and not actual documents, it was effective and functional and
highlighted a revolutionary concept, which is something most
OS do not have.

REFERENCES

[1] D. Barbara, R. Goel, and S. Jajodia, “Using Checksums to Detect Data
Corruption.”

[2] P. Bohannon, R. Rastogi, S. Seshadri, A. Silberschatz, and S. Sudarshan,
“Detection and recovery techniques for database corruption,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15, no. 5, pp.
11201136, Sep. 2003, doi: https://doi.org/10.1109/tkde.2003.1232268.

[3] N. Borisov, S. Babu, N. Mandagere and S. Uttamchandani, “Deal-
ing proactively with data corruption: Challenges and opportuni-
ties,” 2011 IEEE 27th International Conference on Data Engi-
neering Workshops, Hannover, Germany, 2011, pp. 34-39, doi:
10.1109/ICDEW.2011.5767656.

[4] Mark Woodard, Sahra Sedigh Sarvestani, Ali R. Hurson, Chapter
Two - A Survey of Research on Data Corruption in Cyber—Physical
Critical Infrastructure Systems, Editor(s): Ali R. Hurson, Advances in
Computers, Elsevier, Volume 98, 2015, Pages 59-87, ISSN 0065-2458,
ISBN 9780128021323, https://doi.org/10.1016/bs.adcom.2015.03.002.
(https://www.sciencedirect.com/science/article/pii/S0065245815000285)

[5] K. V. Sree Bai and M. Thirumaran, ”Survey of Deep Learning Tech-
niques for Malware Detection: Insights, Challenges, and Future Di-
rections,” 2024 4th International Conference on Soft Computing for
Security Applications (ICSCSA), Salem, India, 2024, pp. 320-324, doi:
10.1109/ICSCSA64454.2024.00057.

[6] A. Rakotomamonjy, S. Kogo and L. Ralaivola, "More efficient sparsity-
inducing algorithms using inexact gradient,” 2015 23rd European Signal
Processing Conference (EUSIPCO), Nice, France, 2015, pp. 709-713,
doi: 10.1109/EUSIPCO.2015.7362475.

[7]1 Elfman, Liz. “What Are Al Hallucinations? Examples Mitigation Tech-
niques.” Data.world, 10 Sept. 2024, data.world/blog/ai-hallucination/.
Accessed 28 Mar. 2025.



